1、了解数据挖掘的定义、功能、常用方法。
定义
数据挖掘(Data Mining)技术是人们长期对数据库技术进行研究和开发的结果。起初各种商业数据是存储在计算机的数据库中的,然后发展到可对数据库进行査询和访问,进而发展到对数据库的即时遍历。数据挖掘使数据库技术进入了一个更高级的阶段,它不仅能对过去的数据进行查询和遍历,并且能够找出过去数据之间的潜在联系,从而促进信息的传递。现在数据挖掘技术在商业应用中已经可以马上投入使用,因为对这种技术进行支持的三种基础技术已经发展成熟,它们是海量数据搜集、强大的多处理器计算机和数据挖掘算法。
从技术角度来看,数据挖掘就是从大量的、不完全的、有噪声的、模糊的、随机的实际应用数据中,提取隐含在其中的、人们事先不知道的、但又是潜在有用的信息和知识的过程。这个定义包括好几层含义:数据源必须是真实的、大量的、含噪声的;发现的是用户感兴趣的知识;发现的知识要可接受、可理解、可运用;并不要求发现放之四海而皆准的知识,仅支持特定的发现问题。
功能
数据挖掘通过预测未来趋势及行为,做出前摄的、基于知识的决策。数据挖掘的目标是从数据库中发现隐含的、有意义的知识,主要有以下五类功能。
1.自动预测趋势和行为
数据挖掘自动在大型数据库中寻找预测性信息,以往需要进行大量手工分析的问题如今可以迅速直接由数据本身得出结论。一个典型的例子是市场预测问题,数据挖掘使用过去有关促销的数据来寻找未来投资中回报最大的用户,其他可预测的问题包括预报破产及认定对指定事件最可能做出反应的群体。
2.关联分析
数据关联是数据库中存在的一类重要的可被发现的知识。若两个或多个变量的取值之间存在某种规律性,就称为关联。关联可分为简单关联、时序关联、因果关联。关联分析的目的是找出数据库中隐藏的关联网。有时并不知道数据库中数据的关联函数,即使知道也是不确定的,因此关联分析生成的规则带有可信度。
3.聚类
数据库中的记录可被划分为一系列有意义的子集,即聚类。聚类增强了人们对客观现实的认识,是概念描述和偏差分析的先决条件。聚类技术主要包括传统的模式识别方法和数学分类学。20 世纪 80 年代初,Michalski 提出了概念聚类技术及其要点,即在划分对象时不仅要考虑对象之间的距离,还要求划分出的类具有某种内涵描述,从而避免了传统技术的某些片面性。
4.概念描述
概念描述就是对某类对象的内涵进行描述,并概括这类对象的有关特征。概念描述分为特征性描述和区别性描述,前者描述某类对象的共同特征,后者描述不同类对象之间的区别。生成一个类的特征性描述只涉及该类对象中所有对象的共性。生成区别性描述的方法很多,如决策树方法、遗传算法等。
5.偏差检测
数据库中的数据常有一些异常记录,从数据库中检测这些偏差很有意义。偏差包括很多潜在的知识,如分类中的反常实例、不满足规则的特例、观测结果与模型预测值的偏差、量值随时间的变化等。偏差检测的基本方法是,寻找观测结果与参照值之间有意义的差别。
技术
常用的数据挖掘技术包括关联分析、序列分析、分类、预测、聚类分析及时间序列分析等
1.关联分析
关联分析主要用于发现不同事件之间的关联性,即一个事件发生的同时,另一个事件也经常发生。关联分析的重点在于快速发现那些有实用价值的关联发生的事件。其主要依据是事件发生的概率和条件概率应该符合一定的统计意义。
对于结构化的数据,以客户的购买习惯数据为例,利用关联分析,可以发现客户的关联购买需要。例如,一个开设储蓄账户的客户很可能同时进行债券交易和股票交易,购买纸尿裤的男顾客经常同时购买啤酒等。利用这种知识可以采取积极的营销策略,扩展客户购买的产品范围,吸引更多的客户。通过调整商品的布局便于顾客买到经常同时购买的商品,或者通过降低一种商品的价格来促进另一种商品的销售等。
对于非结构化的数据,以空间数据为例,利用关联分析,可以发现地理位置的关联性。例如,85%的靠近高速公路的大城镇与水相邻,或者发现通常与高尔夫球场相邻的对象等。
2.序列分析
序列分析技术主要用于发现一定时间间隔内接连发生的事件。这些事件构成一个序列,发现的序列应该具有普遍意义,其依据除了统计上的概率之外,还要加上时间的约束。
3.分类分析
分类分析通过分析具有类别的样本的特点,得到决定样本属于各种类别的规则或方法利用这些规则和方法对未知类别的样本分类时应该具有一定的准确度。其主要方法有基于统计学的贝叶斯方法、神经网络方法、决策树方法及支持向量机(support vector machines)等。
利用分类技术,可以根据顾客的消费水平和基本特征对顾客进行分类,找出对商家有较大利益贡献的重要客户的特征,通过对其进行个性化服务,提高他们的忠诚度。
利用分类技术,可以将大量的半结构化的文本数据,如 WEB 页面、电子邮件等进行分类。可以将图片进行分类,例如,根据已有图片的特点和类别,可以判定一幅图片属于何种类型的规则。对于空间数据,也可以进行分类分析,例如,可以根据房屋的地理位置决定房屋的档次。
4.聚类分析
聚类分析是根据物以类聚的原理,将本身没有类别的样本聚集成不同的组,并且对每个这样的组进行描述的过程。其主要依据是聚到同一个组中的样本应该彼此相似,而属于不同组的样本应该足够不相似。
仍以客户关系管理为例,利用聚类技术,根据客户的个人特征及消费数据,可以将客户群体进行细分。例如,可以得到这样的一个消费群体:女性占 91%,全部无子女、年龄在 31 岁到 40 岁占 70%,高消费级别的占 64%,买过针织品的占 91%,买过厨房用品的占 89%,买过园艺用品的占 79%。针对不同的客户群,可以实施不同的营销和服务方式,从而提高客户的满意度。
对于空间数据,根据地理位置及障碍物的存在情况可以自动进行区域划分。例如,根据分布在不同地理位置的 ATM 机的情况将居民进行区域划分,根据这一信息,可以有效地进行 ATM 机的设置规划,避免浪费,同时也避免失掉每一个商机。
对于文本数据,利用聚类技术可以根据文档的内容自动划分类别,从而便于文本的检索。
5.预测
预测与分类类似,但预测是根据样本的知特征估算某个连续类型的变量的取值的过程,而分类则只是用于判别样本所属的离散类别而已。预测常用的技术是回归分析。
6.时间序列
分析时间序列分析的是随时间而变化的事件序列,目的是预测未来发展趋势,或者寻找相似发展模式或者是发现周期性发展规律。
2、了解数据仓库的产生与发展,掌握数据仓库的定义。
传统的操作型数据库主要是面向业务的,所执行的操作基本上也是联机事务处理但随着企业规模的增长,历史积累的数据越来越多,如何利用历史数据来为未来决策服务,就显得越来越重要了,而数据仓库就是其中的一种技术。
著名的数据仓库专家 W. H. Inmon 在《Building the Data Warehouse》一书中将数据仓库定义为:数据仓库(Data Warehouse)是一个面向主题的、集成的、相对稳定的、且随时间变化的数据集合,用于支持管理决策。
1.面向主题的操作型数据库的数据组织面向事务处理任务(面向应用),各个业务系统之间各自分离,而数据仓库中的数据是按照一定的主题域进行组织的。主题是一个抽象的概念,是指用户使用数据仓库进行决策时所关心的重点方面,一个主题通常与多个操作型信息系统相关。例如,一个保险公司所进行的事务处理(应用问题)可能包括汽车保险、人寿保险、健康保险和意外保险等,而公司的主要主题范围可能是顾客、保险单、保险费和索赔等。
2.集成的在数据仓库的所有特性中,这是最重要的。面向事务处理的操作型数据库通常与某些特定的应用相关,数据库之间相互独立,并且往往是异构的。而数据仓库中的数据是在对原有分散的数据库数据抽取、清理的基础上经过系统加工、汇总和整理得到的,必须消除源数据中的不一致性,以保证数据仓库内的信息是关于整个企业的一致的全局信息。
3.相对稳定的操作型数据库中的数据通常实时更新,数据根据需要及时发生变化。数据仓库的数据主要供企业决策分析之用,所涉及的数据操作主要是数据査询,一旦某个数据进入数据仓库以后,一般情况下将被长期保留,也就是数据仓库中一般有大量的询操作但修改和删除操作很少,通常只需要定期地加载、刷新。
4.随时间变化的操作型数据库主要关心当前某一个时间段内的数据,而数据仓库中的数据通常包含历史信息,系统记录了企业从过去某一时点(如开始应用数据仓库的时点)到目前的各个阶段的信息,通过这些信息,可以对企业的发展历程和未来趋势做出定量分析和预测。数据仓库反映历史变化的属性主要表现在
(1) 数据仓库中的数据时间期限要远远长于传统操作型数据系统中的数据时间期限,传统操作型数据系统中的数据时间期限可能为数十天或数个月,数据仓库中的数据时间期限往往为数年甚至几十年;
(2) 传统操作型数据系统中的数据含有“当前值”的数据,这些数据在访问时是有效的,当然数据的当前值也能被更新,但数据仓库中的数据仅仅是一系列某一时刻(可能是传统操作型数据系统)生成的复杂的快照;
(3) 传统操作型数据系统中可能包含也可能不包含时间元素,如年、月、日、时、分、秒等,而数据仓库中一定会包含时间元素。
数据仓库虽然是从传统数据库系统发展而来,但是两者还是存在着诸多差异,如:从数据存储的内容看,数据库只存放当前值,而数据仓库则存放历史值;数据库数据的目标是面向业务操作人员的,为业务处理人员提供数据处理的支持,而数据仓库则是面向中高层管理人员的,为其提供决策支持等。
3、了解数据仓库与数据挖掘的联系与区别。
数据挖掘(Data Mining)技术是人们长期对数据库技术进行研究和开发的结果。起初各种商业数据是存储在计算机的数据库中的,然后发展到可对数据库进行查询和访问,进而发展到对数据库的即时遍历。数据挖掘使数据库技术进入了一个更高级的阶段,它不仅能对过去的数据进行查询和遍历,并且能够找出过去数据之间的潜在联系,从而促进信息的传递。现在数据挖掘技术在商业应用中已经可以马上投入使用,因为对这种技术进行支持的三种基础技术已经发展成熟,它们是海量数据搜集、强大的多处理器计算机和数据挖掘算法。
从技术角度来看,数据挖掘就是从大量的、不完全的、有噪声的、模糊的、随机的实际应用数据中,提取隐含在其中的、人们事先不知道的、但又是潜在有用的信息和知识的过程。这个定义包括好几层含义:数据源必须是真实的、大量的、含噪声的;发现的是用户感兴趣的知识;发现的知识要可接受、可理解、可运用;并不要求发现放之四海而皆准的知识,仅支持特定的发现问题。
4、了解常用数据挖掘工具。
1.R
2.Oracle Data Mining
3.Tableau
4.Scrapy
5.Weka
6.八爪鱼采集器
7.RapidMiner
8.KNIME
9.Orange
10.IBM SPSS Modeler
11.Pentaho
12.NLTK
5、了解数据仓库的体系结构,掌握元数据、粒度、分割的概念,了解数据仓库中的数据组织形式。
从数据仓库的概念结构看,一般来说,数据仓库系统要包含数据源、数据准备区、数据仓库数据库、数据集市/知识挖掘库及各种管理工具和应用工具。数据仓库建立之后,首先要从数据源中抽取相关的数据到数据准备区,在数据准备区中经过净化处理后再加载到数据仓库数据库,最后根据用户的需求将数据导入数据集市和知识挖掘库中当用户使用数据仓库时,可以利用包括 OLAP (On-line Analysis Processing,联机分析处理) 在内的多种数据仓库应用工具向数据集市/知识挖掘库或数据仓库进行决策査询分析或知识挖掘。数据仓库的创建、应用可以利用各种数据仓库管理工具辅助完成。
元数据
元数据(Metadata),又称中介数据、中继数据,为描述数据的数据(data about data),主要是描述数据属性(property)的信息,用来支持如指示存储位置、历史数据、资源查找、文件记录等功能。元数据算是一种电子式目录,为了达到编制目录的目的,必须在描述并收藏数据的内容或特色,进而达成协助数据检索的目的。
粒度
粒度是数据仓库的重要概念。粒度可以分为两种形式。
第一种粒度是对数据仓库中的数据的综合程度高低的一个度量,它既影响数据仓库中的数据量的多少,也影响数据仓库所能回答询问的种类。在数据仓库中,多维粒度是必不可少的。由于数据仓库的主要作用是DSS分析,因而绝大多数查询都基于一定程度的综合数据之上,只有极少数查询涉及细节。所以应该将大粒度数据存储在快速设备如磁盘上,小粒度数据存储在低速设备如磁带上。
第二种粒度是样本数据库.它根据给定的采样率从细节数据库中抽取出一个子集,这样样本数据库中的粒度就不是根据综合程度的不同来划分,而是由采样率的高低来划分,采样粒度不同的样本数据库可以具有相同的数据综合程度。
分割
分割是数据仓库中的另一个重要概念,它的目的同样在于提高效率。它是将数据分散到各自的物理单元中去,以便能分别独立处理。有许多数据分割的标准可供参考,如日期、地域、业务领域等,也可以是其组合。一般而言,分割标准总应包括日期项,因为它十分自然而且分割均匀。
数据仓库中的数据组织形式
1.简单堆积:以逐个记录为基础堆积的数据。
2.轮转综合数据存储:比如每天的数据综合放到一个日槽中,七天后将七个日槽加到一起,放入周槽,月底将周槽相加放入月槽等。
3.简单直接文件:一般以较长的时间生成,是操作型数据间隔一定时间的快照。
4.连续文件:将一个或者多个简单直接文件生成一种连续文件。
6、了解数据仓库的数据模型,包括概念数据模型、逻辑数据模型、物理数据模型。
1.数据仓库的参考框架
数据仓库的参考框架由数据仓库基本功能层、数据仓库管理层和数据仓库环境支持层组成。
(1) 数据仓库基本功能层。数据仓库的基本功能层部分包含数据源、数据准备区、数据仓库结构、数据集市或知识挖掘库,以及存取和使用部分。本层的功能是从数据源抽取数据,对所抽取的数据进行筛选、清理,将处理过的数据导入或者说加载到数据仓库中,根据用户的需求设立数据集市,完成数据仓库的复杂査询、决策分析和知识的挖掘等。
(2) 数据仓库管理层。数据仓库的正常运行除了需要数据仓库功能层提供的基本功能外,还需要对这些基本功能进行管理与支持的结构框架。数据仓库管理层由数据仓库的数据管理和数据仓库的元数据管理组成。
数据仓库的数据管理层包含数据抽取、新数据需求与查询管理,数据加载、存储、刷新和更新系统,安全性与用户授权管理系统及数据归档、恢复及净化系统等四部分。
(3) 数据仓库的环境支持层。数据仓库的环境支持层由数据仓库数据传输层和数据仓库基础层组成。数据仓库中不同结构之间的数据传输需要数据仓库的传输层来完成。
数据仓库的传输层包含数据传输和传送网络、客户/服务器代理和中间件、复制系统及数据传输层的安全保障系统。
2.数据仓库的架构大众观点的数据仓库的架构如图所示。
(1) 数据源。是数据仓库系统的基础,是整个系统的数据源泉。通常包括企业内部信息和外部信息。内部信息包括存放于 RDBMS(关系型 DBMS)中的各种业务处理数据和各类文档数据。外部信息包括各类法律法规、市场信息和竞争对手的信息等。
(2) 数据的存储与管理。是整个数据仓库系统的核心。数据仓库的真正关键是数据的存储和管理。数据仓库的组织管理方式决定了它有别于传统数据库,同时也决定了其对外部数据的表现形式。要决定采用什么产品和技术来建立数据仓库的核心,则需要从数据仓库的技术特点着手分析。针对现有各业务系统的数据,进行抽取、清理,并有效集成,按照主题进行组织。数据仓库按照数据的覆盖范围可以分为企业级数据仓库和部门级数据仓库(通常称为数据集市)。
(3) OLAP 服务器。对分析需要的数据进行有效集成,按多维模型予以组织,以便进行多角度、多层次的分析,并发现趋势。其具体实现可以分为:基于关系数据库的OLAP实现(ROLAP)、基于多维数据组织的OLAP实现(MOLAP) 和 基于混合数据组织的OLAP实现(HOLAP)。 ROLAP 基本数据和聚合数据均存放在 RDBMS 之中;MOLAP 基本数据和聚合数据均存放于多维数据库中;HOLAP 基本数据存放于 RDBMS 之中,聚合数据存放于多维数据库中。
(4) 前端工具。主要包括各种报表工具、査询工具、数据分析工具、数据挖掘工具及各种基于数据仓库或数据集市的应用开发工具。其中数据分析工具主要针对 OLAP 服务器,报表工具、数据挖掘工具主要针对数据仓库。
1.概念数据模型(CDM)(定义实体的概念以及实体之间的联系)
概念数据模型是现实世界到信息世界的第一层抽象,主要是在高水平和面向业务的角度对信息的一种描述,通常作为业务人员和技术人员之间沟通的桥梁。作为现实世界的概念化结构,这种数据模型使得数据库的设计人员在最初的数据库设计阶段将精力集中在数据之间的联系上,而不用同时关注数据的底层细节(如所用的计算机系统的特性以及数据库管理系统—DBMS的特性)。
概念数据模型主要的贡献在于分析数据之间的联系,它是用户对数据存储的一种高度抽象,反应的是用户的一种业务层面的综合信息需求。
在这个阶段一般会形成整个数据模型或者是软件系统中的实体的概念以及实体之间的联系,为构建逻辑数据模型奠定基础。下图中描述了现实世界和信息世界以及最终转换成计算机世界信息的转换流程。
设计概念数据模型的主要工具是E-R图,扩展的E-R图。
2.逻辑数据模型(LDM)(定义实体的属性)
逻辑数据模型是对概念数据模型进一步具体化,在概念数据模型定义实体的基础上定义了各个实体的属性,是用户从数据库的角度能够看到的数据的模型,是所使用的数据库管理系统(Database Management System,DBMS)所支持的数据类型(网状数据模型、层次数据模型、关系数据模型)。这种数据模型架起了用户和系统之间的桥梁,既要面向用户,同时也考虑到了所用的DBMS所支持的特性。
逻辑数据模型反映了系统分析设计人员针对数据在特定的存储系统(如MySQL)的观点,是对概念数据模型的进一步细化和划分。逻辑数据模型是根据业务之间的规则产生的,是关于业务对象、业务对象数据以及业务对象彼此之间关系的蓝图。
逻辑数据模型的内容包括所有的实体、实体的属性、实体之间的关系以及每个实体的主键、实体的外键(用于维护数据完整性)。其主要目标是尽可能详细的描述数据,但是并不涉及这些数据的具体物理实现。逻辑数据模型不仅会最终影响数据库的设计方向,并最终会影响到数据库的性能(如主键设计、外键等都会最终影响数据库的查询性能)。
逻辑数据模型是开发物理数据库的完整文档,逻辑数据模型主要采用的是层次模型、网状模型、关系模型,其中最常用的是关系模型,对应的数据库称之为关系型数据库,如MySQL。
3.物理数据模型(PDM)(数据库设计)
物理数据模型,又称为物理模型,是概念数据模型和逻辑数据模型在计算机中的具体表示。该模型描述了数据在物理存储介质上的具体组织结构,不但与具体的数据库管理系统相关,同时还与具体的操作系统以及硬件有关,但是很多工作都是由DBMS自动完成的,用户所要做的工作其实就是添加自己的索引等结构即可。
物理数据模型是在逻辑数据模型的基础上,综合考虑各种存储条件的限制,进行数据库的设计,从而真正实现数据在数据库中的存放。其主要的工作是根据逻辑数据模型中的实体、属性、联系转换成对应的物理模型中的元素,包括定义所有的表和列,定义外键以维持表之间的联系等,具体例子如下:
7、掌握联机分析处理(OLAP)技术的概念、特征。
联机分析处理OLAP是一种软件技术,它使分析人员能够迅速、一致、交互地从各个方面观察信息,以达到深入理解数据的目的。
它具有FASMI(Fast Analysis of Shared Multidimensional Information),即共享多维信息的快速分析的特征。
F是快速性(Fast),指系统能在数秒内对用户的多数分析要求做出反应;
A是可分析性(Analysis),指用户无需编程就可以定义新的专门计算,将其作为分析的一部分,并以用户所希望的方式给出报告;
M是多维性(Multi—dimensional),指提供对数据分析的多维视图和分析;
I是信息性(Information),指能及时获得信息,并且管理大容量信息。
8、掌握 OLAP 中的多维分析操作,包括钻取、切片和切块、旋转。
(1)切片和切块(Slice and Dice)
切片和切块是在维上做投影操作。
切片就是在多维数据上选定一个二维子集的操作,即在某两个维上取一定区间的维成员或全部维成员,而在其余的维上选定一个维成员的操作。
维是观察数据的角度,那么切片的作用或结果就是舍弃一些观察角度,使人们能在两个维上集中观察数据。因为人的空间想象能力毕竟有限,一般很难想象四维以上的空间结构,所以对于维数较多的多维数据空间,数据切片是十分有意义的.
(2)钻取(Drill)
钻取有向下钻取(Drill Down)和向上钻取(Drill up)操作。向下钻取是使用户在多层数据中展现渐增的细节层次,获得更多的细节性数据。向上钻取以渐增概括方式汇总数据(例如,从周到季度,再到年度)。
(3)旋转(Pivoting)
通过旋转可以得到不同视角的数据。旋转操作相当于在平面内将坐标轴旋转。例如,旋转可能包含了交换行和列,或是把某一个行维移到列维中去,或是把页面显示中的一个维和页面外的维进行交换(令其成为新的行或列中的一个)。
9、了解多维联机分析处理、关系联机分析处理、MOLAP 和 ROLAP 的差异、混合型联机分析处理;OLAP 的衡量标准。
数据仓库与OLAP的关系是互补的,现代OLAP系统一般以数据仓库作为基础,即从数据仓库中抽取详细数据的一个子集并经过必要的聚集存储到OLAP存储器中供前端分析工具读取。
OLAP系统按照其存储器的数据存储格式可以分为关系OLAP(RelationalOLAP,简称ROLAP)、多维OLAP(MultidimensionalOLAP,简称MOLAP)和混合型OLAP(HybridOLAP,简称HOLAP)三种类型。
ROLAP
ROLAP将分析用的多维数据存储在关系数据库中并根据应用的需要有选择的定义一批实视图作为表也存储在关系数据库中。不必要将每一个SQL查询都作为实视图保存,只定义那些应用频率比较高、计算工作量比较大的查询作为实视图。对每个针对OLAP服务器的查询,优先利用已经计算好的实视图来生成查询结果以提高查询效率。同时用作ROLAP存储器的RDBMS也针对OLAP作相应的优化,比如并行存储、并行查询、并行数据管理、基于成本的查询优化、位图索引、SQL的OLAP扩展(cube,rollup)等等。
MOLAP
MOLAP将OLAP分析所用到的多维数据物理上存储为多维数组的形式,形成“立方体”的结构。维的属性值被映射成多维数组的下标值或下标的范围,而总结数据作为多维数组的值存储在数组的单元中。由于MOLAP采用了新的存储结构,从物理层实现起,因此又称为物理OLAP(PhysicalOLAP);而ROLAP主要通过一些软件工具或中间软件实现,物理层仍采用关系数据库的存储结构,因此称为虚拟OLAP(VirtualOLAP)。
HOLAP
由于MOLAP和ROLAP有着各自的优点和缺点,且它们的结构迥然不同,这给分析人员设计OLAP结构提出了难题。为此一个新的OLAP结构——混合型OLAP(HOLAP)被提出,它能把MOLAP和ROLAP两种结构的优点结合起来。迄今为止,对HOLAP还没有一个正式的定义。但很明显,HOLAP结构不应该是MOLAP与ROLAP结构的简单组合,而是这两种结构技术优点的有机结合,能满足用户各种复杂的分析请求。
10、了解数据预处理的原因、数据预处理的方法。
原因
(1)现实世界的数据是肮脏的(不完整,含噪声,不一致)
(2)没有高质量的数据,就没有高质量的挖掘结果(高质量的决策必须依赖于高质量的数据;数据仓库需要对高质量的数据进行一致地集成)
(3)原始数据中存在的问题:
不一致 —— 数据内含出现不一致情况
重复
不完整 —— 感兴趣的属性没有
含噪声 —— 数据中存在着错误、或异常(偏离期望值)的数据
高维度
方法
(1)数据清洗 —— 去噪声和无关数据
(2)数据集成 —— 将多个数据源中的数据结合起来存放在一个一致的数据存储中
(3)数据变换 —— 把原始数据转换成为适合数据挖掘的形式
(4)数据归约 —— 主要方法包括:数据立方体聚集,维度归约,数据压缩,数值归约,离散化和概念分层等。
11、掌握数据清洗、数据集成和变换、数据归约的概念与方法,具有应用上述方法进行数据清洗的能力。
数据清洗
1)处理缺失值方法:
a.忽略元祖,挖掘任务涉及分类任务中如果缺少类标号时通常这样做
b.人工填写缺失值,量大时行不通
c.使用一个全局常量填充缺失值,简单但不可靠
d.使用属性的均值填充缺失值
e.使用与给定元组属同一类的所有样本的属性均值
f.使用最有可能的值填充缺失值,可以用回归,使用贝叶斯形式化的基于推理的工具或决策树归纳确定,是流行的做法。
2)数据光滑技术:噪声是被测量的变量的随机误差或方差
a.分箱,分箱方法通过考察数据的“近邻”(即周围的值)来光滑有序数据的值,有序值分布到一些“桶”或箱中。由于分箱方法考察近邻的值,因此进行局部光滑。几种分箱技术:用箱均值光滑、用箱边界光滑、用箱中位数光滑。
b.回归:可以用一个函数(如回归函数)拟合数据来光滑数据。线性回归涉及找出拟合两个属性(或变量)的“最佳”线,是的一个属性可以用来预测另一个。多元线性回归是线性回归的扩展,其中涉及的属性多于两个,并且数据拟合到一个多维曲面。
c.聚类:通过聚类检测离群点
3)数据清理作为一个过程的方法:过程的第一步是偏差检测,有大量商业工具帮助我们进行偏差检测,数据清洗工具、数据审计工具、数据迁移工具、ETL工具。新的数据清理方法强调加强交互性,如Potter’s Wheel,集成了偏差检测和数据变换。
数据集成和变换
1)数据集成:数据分析任务多半涉及数据集成。数据集成合并多个数据源中的数据,存放在一个一致的数据存储(如数据仓库)中。这些数据源可能包括多个数据库、数据立方体或一般文件。
数据集成有三个主要问题:
a.模式集成和对象匹配,实体识别问题:来自多个信息源的现实世界的等价实体如何才能匹配?元数据可以帮助避免模式集成的错误。
b.冗余:有些冗余可以被相关分析检测到。通过计算属性A,B的相关系数(皮尔逊积矩系数)来判断是否冗余;对于离散数据,可通过卡方检验来判断两个属性A和B之间的相关联系。
c.数据值冲突的检测与处理
2)数据变换:将数据转换或统一成适合于挖掘的形式。涉及如下内容:
a.光滑:去掉数据的噪声,包括分箱,回归和聚类
b.聚集:对数据进行汇总或聚集。这一步通常用来为多粒度数据分析构造数据立方体
c.数据泛化:使用概念分层,用高层概念替换底层或“原始”数据。
d.规范化:又称为归一化,feature scaling特征缩放。将属性数据按比例缩放,使之落入一个小的特定区间。规范化方法:
1.最小-最大规范化:v’=[(v-min)/(max-min)]*(new_max-new_min)+new_min
2.z-score规范化(或零均值规范化):v’=(v-属性A的均值E)/属性A的标准差∽
3.小数定标规范化:v’=v/10的j次方,j是使Max(|v’|)<1的最小整数
e.属性构造(或特征构造):可以构造新的属性并添加到属性集中,以帮助挖掘过程。
数据归约
数据集可能非常大!面对海量数据进行复杂的数据分析和挖掘将需要很长的时间。数据归约技术可以用来得到数据集的归约表示,它小很多,但仍接近保持原数据的完整性。数据归约策略如下:
1)数据立方体聚集:聚集操作用于数据立方体结构中的数据。数据立方体存储多维聚集信息。
2)属性子集选择,参见文本分类概述中特征选择算法
3)维度归约:使用数据编码或变换,以便得到原数据的归约或“压缩”表示。归约分为无损的和有损的。有效的有损维归约方法为:小波变换和主成分分析
4)数值归约:通过选择替代的、‘较小的’数据表示形式来减少数据量
5)离散化和概念分层产生
12、了解关联规则的概念和分类。
关联规则是形如X→Y的蕴涵式,其中, X和Y分别称为关联规则的先导(antecedent或left-hand-side, LHS)和后继(consequent或right-hand-side, RHS) 。其中,关联规则XY,存在支持度和信任度。
基于规则中处理的变量的类别
关联规则处理的变量可以分为布尔型和数值型。布尔型关联规则处理的值都是离散的、种类化的,它显示了这些变量之间的关系;而数值型关联规则可以和多维关联或多层关联规则结合起来,对数值型字段进行处理,将其进行动态的分割,或者直接对原始的数据进行处理,当然数值型关联规则中也可以包含种类变量。例如:性别=“女”=>职业=“秘书” ,是布尔型关联规则;性别=“女”=>avg(收入)=2300,涉及的收入是数值类型,所以是一个数值型关联规则。
基于规则中数据的抽象层次
基于规则中数据的抽象层次,可以分为单层关联规则和多层关联规则。在单层的关联规则中,所有的变量都没有考虑到现实的数据是具有多个不同的层次的;而在多层的关联规则中,对数据的多层性已经进行了充分的考虑。例如:IBM台式机=>Sony打印机,是一个细节数据上的单层关联规则;台式机=>Sony打印机,是一个较高层次和细节层次之间的多层关联规则。
基于规则中涉及到的数据的维数
关联规则中的数据,可以分为单维的和多维的。在单维的关联规则中,我们只涉及到数据的一个维,如用户购买的物品;而在多维的关联规则中,要处理的数据将会涉及多个维。换成另一句话,单维关联规则是处理单个属性中的一些关系;多维关联规则是处理各个属性之间的某些关系。例如:啤酒=>尿布,这条规则只涉及到用户的购买的物品;性别=“女”=>职业=“秘书”,这条规则就涉及到两个字段的信息,是两个维上的一条关联规则。