1、了解常用的大数据分析模型,例如行为事件分析模型、点击分析模型、用户行为路径分析模型、用户分群分析模型等,具有应用大数据技术进行大数据分析能力
行为事件分析模型
行为事件分析法来研究某行为事件的发生对企业组织价值的影响以及影响程度。企业借此来追踪或记录的用户行为或业务过程,如用户注册、浏览产品详情页、成功投资、提现等,通过研究与事件发生关联的所有因素来挖掘用户行为事件背后的原因、交互影响等。
在日常工作中,运营、市场、产品、数据分析师根据实际工作情况而关注不同的事件指标。如最近三个月来自哪个渠道的用户注册量最高?变化趋势如何?各时段的人均充值金额是分别多少?上周来自北京发生过购买行为的独立用户数,按照年龄段的分布情况?每天的独立 Session 数是多少?诸如此类的指标查看的过程中,行为事件分析起到重要作用。
行为事件分析法具有强大的筛选、分组和聚合能力,逻辑清晰且使用简单,已被广泛应用。行为事件分析法一般经过事件定义与选择、下钻分析、解释与结论等环节。
事件定义与选择。
事件描述的是,一个用户在某个时间点、某个地方、以某种方式完成了某个具体的事情。Who、When、Where、What、How是定义一个事件的关键因素。其中:
Who 是参与事件的主体,对于未登陆用户,可以是 Cookie、设备ID 等匿名 ID ;对于登录用户,可以使用后台配置的实际用户ID;
When 是事件发生的实际时间,应该记录精确到毫秒的事件发生时间;
Where 即事件发生的地点,可以通过IP来解析用户所在省市;也可以根据 GPS 定位方式获取地理位置信息。
How 即用户从事这个事件的方式。用户使用的设备、浏览器、 App 版本、渠道来源等等;
What 描述用户所做的这个事件的所有具体内容。比如对于“购买”类型的事件,则可能需要记录的字段有:商品名称、商品类型、购买数量、购买金额、付款方式等。
多维度下钻分析。
最为高效的行为事件分析要支持任意下钻分析和精细化条件筛选。当行为事件分析合理配置追踪事件和属性,可以激发出事件分析的强大潜能,为企业回答关于变化趋势、维度对比等等各种细分问题。同时,还可以通过添加筛选条件,可以精细化查看符合某些具体条件的事件数据。
解释与结论。
此环节要对分析结果进行合理的理论解释,判断数据分析结果是否与预期相符,如判断产品的细节优化是否提升了触发用户数。如果相悖,则应该针对不足的部分进行再分析与实证。
用户分群分析模型
用户分群数据分析方法是进行用户画像的关键数据分析模型,这是企业进行数据分析、精细化运营的第一步。用户分群即用户信息标签化,通过用户的历史行为路径、行为特征、偏好等属性,将具有相同属性的用户划分为一个群体,并进行后续分析。
漏斗分析关注阶段差异,用户分群关注群体差异
通过漏斗分析模型,运营人员可以看到,用户在不同阶段所表现出的行为是不同的,譬如新用户的关注点在哪里?已购用户什么情况下会再次付费?然而,由于群体特征不同,行为会有很大差别,因此运营人员或者产品人员希望可以根据历史数据将用户进行划分,将具有一定规律特性的用户群体进行归类,进而再次观察该群体的具体行为。这就是用户分群的原理。
普通用户分群与预测分群
严格说来,用户分群分为普通分群和预测分群。普通分群是依据用户的属性特征和行为特征将用户群体进行分类;预测分群是根据用户以往的行为属性特征,运用机器学习算法来预测他们将来会发生某些事件的概率。
点击分析模型
点击分析模型在各行业内数据分析应用较为广泛,是重要的数据分析模型之一。
点击图是点击分析方法的效果呈现,在用户行为分析领域,点击分析被应用于显示页面或页面组(结构相同的页面,如商品详情页、官网博客等)区域中不同元素点击密度的图示。包括元素被点击的次数、占比、发生点击的用户列表、按钮的当前与历史内容等因素。
点击分析具有分析过程高效、灵活、易用,效果直观的特点。点击分析采用可视化的设计思想与架构,简洁直观的操作方式,直观呈现访客热衷的区域,帮助运营人员或管理者评估网页的设计的科学性。
在追求精细化网站运营的路上,企业对用户点击行为的可视化分析提出了更高需求,理想的点击分析方法主要分析:
1、精准评估用户与网站交互背后的深层关系
除了展示单个页面或页面组的点击图,前沿的点击分析应该能够支持事件(元素)属性、用户属性的任意维度筛选下钻;运营人员可以按照事件属性和用户属性进行筛选,对特定环境下特定用户群体对特定元素的点击进行精细化分析;支持查看页面元素点击背后的用户列表,满足企业网站的精细化分析需求。
2、实现网页内跳转点击分析,抽丝剥茧般完成网页深层次的点击分析;
前沿的点击分析应支持网页内点击跳转分析——在浏览页面点击图时,使用者能够像访问者一样,点击页面元素,即可跳转至新的分析页面,且新的分析页面自动延续上一页面的筛选条件。同一筛选条件下,运营人员可抽丝剥茧般完成网页深层次的点击分析,操作流畅,分析流程简易、高效。
3、与其他分析模型配合,以全面视角探索数据价值,能够深度感知用户体验,实现科学决策。
无法精细化地深入分析,会让网页设计与优化丧失了科学性。点击图呈现用户喜爱点击的模块或聚焦的内容,是数据价值最上层表现。当“点击分析”与其他分析模块配合,交叉使用,将数据和分析结果以多种形式可视化展现,运营人员即可深度感知用户体验。例如,改版后,如何评估新版本对用户体验的影响?一处修改,是否影响其他元素的点击……等等。再如 A/B 测试,反复验证优化效果选择最优方案等。
用户行为路径分析模型
什么是用户行为路径?
用户路径分析,顾名思义,用户在APP或网站中的访问行为路径。为了衡量网站优化的效果或营销推广的效果,以及了解用户行为偏好,时常要对访问路径的转换数据进行分析。
以电商为例,买家从登录网站/APP到支付成功要经过首页浏览、搜索商品、加入购物车、提交订单、支付订单等过程。而在用户真实的选购过程是一个交缠反复的过程,例如提交订单后,用户可能会返回首页继续搜索商品,也可能去取消订单,每一个路径背后都有不同的动机。与其他分析模型配合进行深入分析后,能为找到快速用户动机,从而引领用户走向最优路径或者期望中的路径。
用户路径分析模型的价值
用户路径的分析结果通常以桑基图形式展现,以目标事件为起点/终点,详细查看后续/前置路径,可以详细查看某个节点事件的流向,总的来说,科学的用户路径分析能够带来以下价值:
第一,可视化用户流,全面了解用户整体行为路径;
通过用户路径分析,可以将一个事件的上下游进行可视化展示。用户即可查看当前节点事件的相关信息,包括事件名、分组属性值、后续事件统计、流失、后续事件列表等。运营人员可通过用户整体行为路径找到不同行为间的关系,挖掘规律并找到瓶颈。
第二,定位影响转化的主次因素,产品设计的优化与改进有的放矢。
路径分析对产品设计的优化与改进有着很大的帮助,了解用户从登录到购买整体行为的主路径和次路径,根据用户路径中各个环节的转化率,发现用户的行为规律和偏好,也可以用于监测和定位用户路径走向中存在的问题,判断影响转化的主要因素和次要因素,也可以发现某些冷僻的功能点。